\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (Civil Engg.) II Year II-Semester Advanced Supplementary Examinations, June/July-2017

Time: $11 / 2$ hours

Electrical Technology

Max. Marks: 35

Part-A (11 Marks)

1. Write down the expression for power in a three phase balanced circuit.
2. What are the different tests to conduct to find out the losses in a transformer?
3. Can you name which type of induction motor is suitable in elevator and cranes?
4. Draw the power triangle for a series $R L$ circuit.
5. Define $\operatorname{Cos}^{3} \theta$ law.
6. What is the voltage across 10 ohm resistor in the figure below:

7. Define regulation of a transformer and explain why does the regulation value should be low?
8. A three phase, 50 Hz , induction motor has 6 poles and operate with slip of 5% at certain load. Determine the synchronous speed and rotor frequency.

$$
\text { Part-B }(3 \times 8=24 \text { Marks })
$$

9. a) A coil having a resistance of 10Ω and inductance of 31.8 mH is connected to 230 V , 50 Hz supply. Calculate i) circuit current, ii) phase angle, iii) power factor, iv) voltage drop across the elements.
b) Calculate the power consumed in 20Ω resistor shown on the diag.

10. a) Given below are the results conducted on $50 \mathrm{KVA}, 2200 \mathrm{~V} / 220 \mathrm{~V}$ transforme OC test (LV) : $405 \mathrm{~W}, 5 \mathrm{~A}, 220 \mathrm{~V}$
 SC test (HV) : 805W,20.2A,95V
 Calculate the parameters of the equivalent circuit referred to HV side.

b) With help of phasor diagram explain the working of a Practical transformer under load condition.
11. a) Explain about synchronous speed of a three phase induction motor which has 8 poles. If the full load slip is 2.5%, determine synchronous speed and rotor frequency of this motor working. with 50 Hz supply.
b) Explain the concept of rotating magnetic field.
12. Answer any two of the following:
a) Derive the relationship between line voltage and phase voltage of a tree phase star
connected system.
b) Define Turns Ratio and Voltage Ratio. Calculate the primary side and secondary side current of $2 \mathrm{KVA}, 1000 \mathrm{~V} / 100 \mathrm{~V}$ transformer.
c) Explain the significance of Polar Curve.

